On locally compact semitopological graph inverse semigroups
نویسندگان
چکیده
منابع مشابه
Almost Factorizable Locally Inverse Semigroups
A factorizable inverse monoid can be identified, up to isomorphism, with an inverse submonoid M of a symmetric inverse monoid I(X) where each element of M is a restriction of a permutation of X belonging to M . So factorizable inverse monoids are natural objects, and appear in a number of branches of mathematics, cf. [12], [4]. The notion of an almost factorizable inverse semigroup was introduc...
متن کاملEmbedding Locally Compact Semigroups into Groups
Let X, Y, Z be topological spaces. A function F :X × Y → Z is called jointly continuous if it is continuous from X × Y with the product topology to Z . It is said to be separately continuous if x 7→ F (x, y):X → Z is continuous for each y ∈ Y and y 7→ F (x, y):Y → Z is continuous for each x ∈ X . A semitopological semigroup is a semigroup S endowed with a topology such that the multiplication f...
متن کاملOn Countably Compact 0-simple Topological Inverse Semigroups
We describe the structure of 0-simple countably compact topological inverse semigroups and the structure of congruence-free countably compact topological inverse semigroups. We follow the terminology of [3, 4, 8]. In this paper all topological spaces are Hausdorff. If S is a semigroup then we denote the subset of idempotents of S by E(S). A topological space S that is algebraically a semigroup ...
متن کاملArveson Spectrum On Locally Compact Hypergroups
In this paper we study the concept of Arveson spectrum on locally compact hypergroups and for an important class of compact countable hypergroups . In thiis paper we study the concept of Arveson spectrum on locally compact hypergroups and develop its basic properties for an important class of compact countable hypergroups .
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Matematychni Studii
سال: 2018
ISSN: 1027-4634
DOI: 10.15330/ms.49.1.19-28